IN:SIGHT – Supporting Situation-Awareness in Mobile Applications

Stefan Pfennigschmidt Ulrich Meissen Agnès Voisard Tjark Wahnfried

Fraunhofer Institute for Software and Systems Engineering

1

June 2005

Outline

Introduction

IN:SIGHT

Situation algebra

Back to IN:SIGHT

Conclusion

- WIND Weather Information on Demand
- modeling situations
- application
- basic idea
- situation sequences
- operators
- general procedure
- walk-through

WIND – a location-based service in practice

Fraunhofer _{Institut} Software- und Systemtechnik 3

WIND – Weather Information on Demand

ISST Institut Software- und Systemtechnik	May 2002	first demonstrator with 5.000 users of an insurance company
VER SICHER UNGS KAMMER BAYERN	January 2003	start as a commercial service in Germany
Erranoguppa meteomedia ag	March 2003	WIND gained the Innovation Award of the insurance sector in Germany
	October 2004	start of WIND in Austria
Verband öffentlicher Versicherer	2005 – 2007	establishing the service in Sweden, Switzerland and Italy

WIND – Precise radar-based warnings

K₁: geographic location inside the storm prognosis

K₂: geographic location outside the storm prognosis

 $d_1^{}\!\!:\!$ distance of position K_1 to the storm front

further development

 \Rightarrow WIND for mobile users

Situation model

Situations	
	Context- or situation-aware applications require a model of a user's environment
characteristics	Situations model characteristics of the environment.
time and dynamics	Situations model <i>changes</i> of the environment.
used for	 proactively infering information need situation-based message rating
	need-oriented information supply

7

Contexts and characteristics

Contexts sequences and situations

Situation

A situation consists of a set of characteristic features associated with a time interval.

symbolically

$$(t_{\rm b}, t_{\rm e}, C)$$

IN:SIGHT

Fraunhofer _{Institut} Software- und Systemtechnik 11

IN:SIGHT

Integrated Situation-based Guidance and Hazard Detection

objectives:

supporting situation-awareness predicting situations, informing the driver

IN:SIGHT – General idea

two basic ideas

1. predicting (dangerous) situations

2. matching the system knowledge against expectations of a user

identifying information to deliver

Parenthesis: Situation algebra

Situation sequence

A situation sequence is a well-ordered set of not overlapping situations. The order is given by the time intervals.

symbolically

 $(S,\prec:)$

Situation sequences: relations

Predecessor	$s_{\rm p}$ is called predecessor of s if all situations following $s_{\rm p}$ (except s) are also following s
Successor	s_{s} is called successor of s if all situations following s (except s_{s} itself) are also following s_{s}
Completeness	a situation sequence is considered complete if for any situation s the following is true: If there is a predecessor s_p to s then s_p meets s and if there is a successor s_s to s then s_s is met by s
Normality	a situation sequence S is called normalized if all neighboring situations do have different characteris- tics

Selection: $\sigma : S \times P \rightarrow S$

Extracts all situations from a sequence satisfying a certain pattern.

Extraction: $\pi: S \times P \rightarrow S$

Extracts those parts of situations from a sequence defined by a certain pattern.

Difference: $\backslash : S \times S \rightarrow S$

The difference of two situation sequences S_1 and S_2 is the situation sequence describing the "situational knowledge" contained in S_1 that do not appear in S_2 .

Intersection: $\cap : S \times S \rightarrow S$

The intersection of two situation sequences S_1 and S_2 is the situation sequence describing the "situational knowledge" contained in S_1 as well as in S_2 .

20

Union: $\cup : S \times S \rightarrow S$

The union of two situation sequences S_1 and S_2 is the situation sequence describing the combined "situational knowledge" of both sequences.

21

Back to IN:SIGHT

Fraunhofer _{Institut} Softwore- und Systemtechnik 22

IN:SIGHT – General Procedure

- computing Δ
- information value
- informing
- updating

Conclusion

Conclusion

main points	 need-oriented information supply: only (new) information is delivered general model supporting various application cases
examples	 congestion information demand-oriented navigation cooperative work support mobile gaming
enhancement	 memory function using local sensor data (e.g., rain sensor) additional situation overview

Thank you very much!

