SIGN – Adapting Navigation Instructions to Individual Users

Stefan Pfennigschmidt Ulrich Meissen Agnès Voisard

Fraunhofer Institute for Software and Systems Engineering

September 2006

Outline

introduction

• personalized mobile services

SIGN

motivation

• basic idea

terminology

from navigation systems

• from situation-based systems

• interconnection

back to SIGN

architecture

general procedure

conclusions

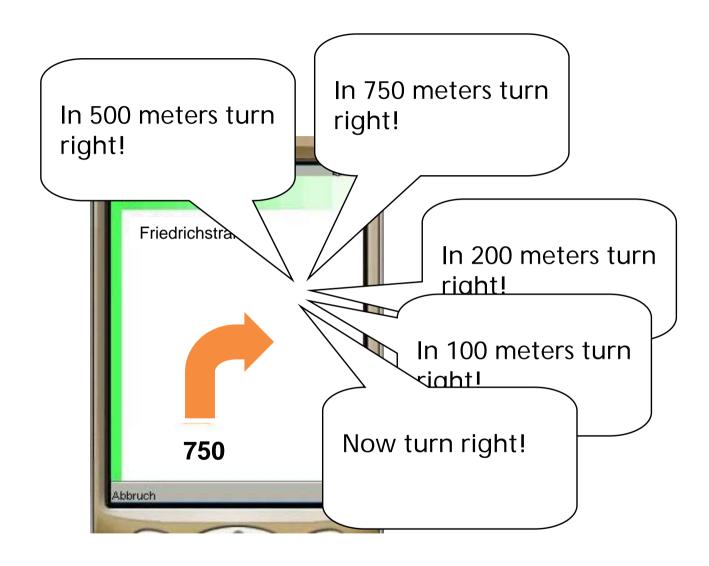
Personalization of Mobile Services

technological aspects

- small displays
- limited interaction capabilities
- bandwidth
- communication cost

usage aspects

mobile usage (ad hoc, short, as support)



"intelligent" services

Example: Navigation Systems

navigation systems support two modes

on

Example: Navigation Systems

navigation systems support two modes

off

SIGN - Basic Idea

SIGN module

situationdependent guidance and navigation

suiting navigation to local knowledge

backlight on, notification sound, "left into Schillerstraße"

SIGN - Notions

familiarity describes routes a user knows (local knowledge)

as an absolute concept

habits describes routes a user usually takes

as a *relative* concept

expectations describes route features a user expects (due to

familiarity and habits)

side conditions limits familiarity, influence habits, e.g.,

weather,

· daylight,

season,

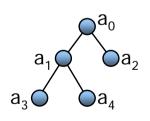
modeling of a user's history and comparison required

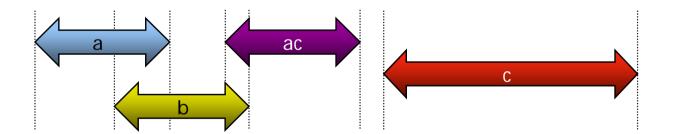
Terminology

Terminology from Navigation Systems

link a basic road element e.g., "Wilhelmstraße" from "Behrenstraße" to "Unter den Linden" e.g., NAVTEQ: (53500573,0) an ordered set of successive links segment triple (startpoint, endpoint, ordered set of succ. links) route

Terminology from Situation-based Systems


situation


A situation is a set of characteristic features – or characteristics – valid during a time interval.

symbolically

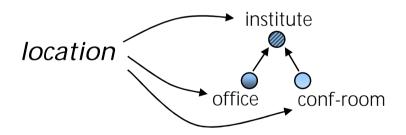
$$(t_{\rm b}, t_{\rm e}, C)$$

characteristic features:

 \bigcirc a = A(a₁) \bigcirc b = B(b₁) \bigcirc c = C(c₁)

Situation terminology

based on predicate logics


situation invariant feature holding during a time interval

•

feature logical proposition defined over a dimension:

e.g., location(office)

dimension predicate defined over a concept hierarchy (DAG)

pattern conjunction of features

Situation terminology (cont'd)

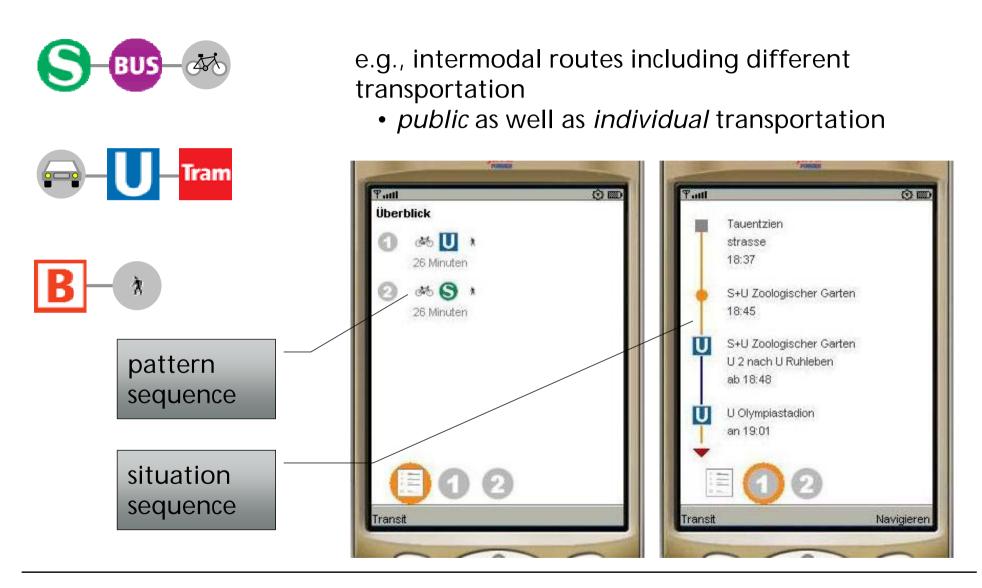
situation sequence ordered set of non-overlapping situations

transition difference in the patterns of two neighboring

situations

event change in the situation of a user (time, transition)

sequences pattern sequence $\bigcirc \bigcirc \bigcirc \bigcirc$


transition sequence \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

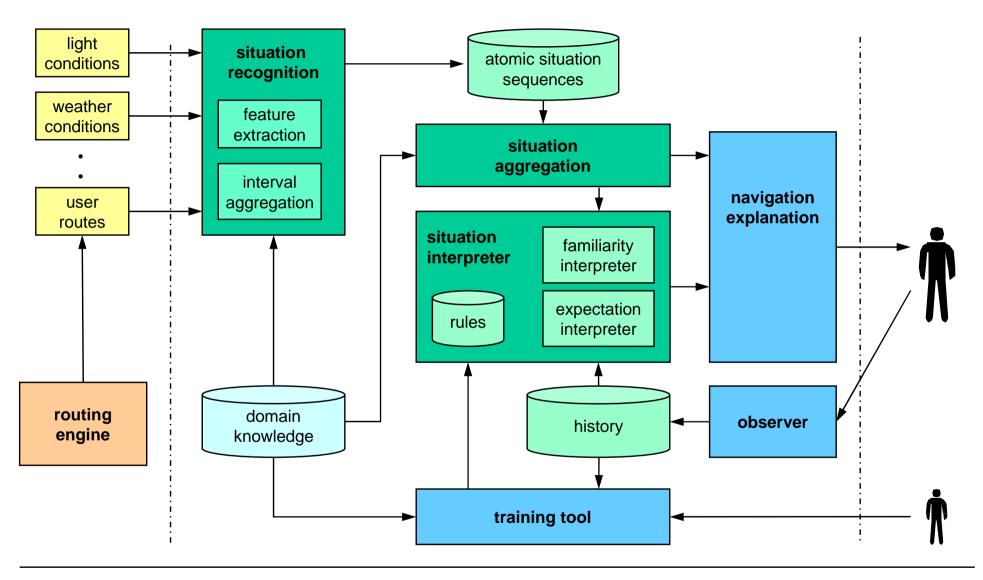
event sequence

Routes and Situations

Routes and Situations (cont'd)

routes as situation sequences situation-dependent silent avoid voice preferences interface changes interface avoid undergr. integration with weather, cloudy rainy daylight conditions daylight dusk

well known


inferring

familiarity and habits

unkn

System Architecture

SIGN - Architecture

Back to the Example

Back to the Navigator Example

knowledge-dependent navigation instructions depend on familiarity and habits

route representation as pattern sequences Platz der Vereinten Nationen (c)2005 by pharus-plan-media.de Mollstraße Karl-Liebknecht-Straße Alexanderplatz Karl-Liebknecht-Straße integrating additional features, e.g., • daylight conditions, • guided (yes/no), season

advantage

"string" manipulation functions applicable

SIGN - Basic Algorithm

new route

basic procedure

- (1) Identify familiar routes.
- (2) Compute familiar segments of the new route.
- (3) Compute the optimal segment combination.
- (4) Derive Instructions.

Conclusion

Conclusion

personalization

- uses the notions of
 - familiarity,
 - habits, and
 - expectations

SIGN approach

 based on describing and comparing situation sequences

application of SIGN

- in individual motorized transportation
- also applicable in public transportation (?)

some further research issues

- familiarity extraction
- familiarity dependent routing

Thank you very much!

