
Predicting Route Targets
Based on Optimality Considerations

Jörg Roth
Department of Computer Science

Nuremberg Institute of Technology
Nuremberg, Germany

Joerg.Roth@th-nuernberg.de

Abstract—In this paper we present an approach to predict a
target of a mobile user on the move. After observing the move-
ment from a starting point, we are able to create possible ex-
trapolations of routes. Our basic assumption: a mobile user tries
to move efficiently, thus only a certain set of destinations is rea-
sonable. We use a road network that contains information about
movement costs to detect reasonable movements, but we do not
expect theoretical optimal paths. We are able to model different
efficiency goals and different degrees of optimality. We present
an efficient algorithm to actually compute the set of reasonable
targets that avoids brute force computation. In contrast to exist-
ing work to predict route destinations, we do not require a
learning phase to collect an archive of former routes.

Keywords—route planning, target prediction, road maps

I. INTRODUCTION

Current mobile users often carry mobile devices that are
able to detect their current position, often based on satellite
navigation systems. A mobile device can thus easily store re-
cent locations for a certain time. In this paper we introduce an
approach to predict all possible targets based on the current
route, i.e. the positions from the last starting point to the cur-
rent position. The knowledge about possible targets can be use-
ful for several services and applications:

 A community service can proactively register a user to
potential targets. Community members can be informed
before a user arrives, e.g. "Bob will approach down-
town in 10 minutes".

 Information services can provide information for people
on the move. They can, e.g., warn drivers who are going
to drive into a restricted low-emission zone, can suggest
free parking places in the target area or inform about
traffic jams.

 An advanced tourist guide can suggest interesting sites
in the current walking direction. Similar services can be
useful for, e.g. shopping (detect shops) or hiking (detect
accommodations).

Predicting targets has a long tradition. The common ap-
proach is to learn the user's habits from former trips. The draw-
backs: we have to undergo a learning phase and it completely
fails, if the user moves to a certain destination for the first time.

In this paper we introduce a novel approach: we only process
the positions of the current trip and extrapolate the route using
a road network. We assume a mobile user tries to hold a certain
degree of optimality when moving across the road network. We
can use this assumption to predict reasonable targets. Our ap-
proach contains two parts:

 We first define a measure of target orientation. This is
due to the fact that users may not necessarily drive on
theoretically optimal routes.

 We create a mechanism that extends an existing route to
all targets that hold a given measure of target orienta-
tion.

This approach is not able to detect the single actual destina-
tion of a trip; instead it computes a superset of all reasonable
targets. We later describe it as a polygonal area that encloses
all targets. If the mobile user drives reasonably (described by
our measure of target orientation), the actual destination will be
part of our computed target region.

We are free to define any measure of target orientation. But
it turned out that most of them only enable brute force mecha-
nisms to compute a target area. Thus, we have to carefully se-
lect a measure that a) reflects the intention of target oriented
movement, and b) supports an efficient target area computa-
tion. We later introduce such a measure.

II. RELATED WORK

Several approaches deal with the problem of route and tar-
get prediction. The majority of existing work tries to learn im-
portant routes from the past. For this, a mobile user is observed
for a longer time (e.g. some weeks) to create an archive of
routes. These approaches usually answer two questions: a)
How can an automatic process extract routes from stored mo-
tion logs? b) Once started driving, how can we find a similar
leading path in our route archive? Both answers usually base
on a similarity function that compares route geometries – ex-
isting work (e.g. [2], [5], [7], [9]) may differ in the respective
similarity function. The measure of similarity can be improved
with additional mechanisms: [6] applies a Hidden Markov
Model to evaluate a sequence of route segments. [3] not only
creates a history of routes, but tries to organize them as a route
tree. [4] additionally considers day and daytime to evaluate

978-1-4799-5350-9/14/$31.00 ©2014 IEEE

similarity of routes. Once we predicted a probable route, we
can also use this information to improve the positioning system
[10].

Another group of approaches not want to predict routes but
try to identify important targets ([12], [13]). These targets can
be computed with the help of geometric clustering without to
know the actual road network.

A solution to a smaller problem is presented in [11]: instead
of finding out the final destination, the approach tries to predict
only the next road segment, i.e. the turn at the next crossing.
This information may be useful for routing applications, but is
too specific for more complex services.

The approach described in [8] is the closest to our work: it
computes possible target areas assuming a driver mainly uses
efficient routes. For this, the road network is split into cells of
1 km x 1 km. Between each pair of cells a route planning algo-
rithm computes the shortest path between road points nearest to
the cell centres. A driven route can be considered as a list of
traversed cells. As all shortest paths between cells centres are
known, possible target cells can thus be identified. The major
drawback is the cell-based structure: we cannot identify targets
smaller than cells and the road network is simplified to few
representatives – the cell centres. For small routes and dense
road networks, this approach is not applicable as it actually
based on a brute-force approach. It cannot be transferred to
smaller structures than cells, because the number of routing
permutations would get critical.

III. PREDICTING TARGET REGIONS

A. The General Idea

The idea is based on an assumption: a mobile user tries to
move efficiently across a road network. The degree of effi-
ciency depends on the respective user, but moving from A to B
people intuitively try to reduce costs – whatever costs mean. In
the following we use the terms 'driving' and 'driver', but this
approach can also be transferred to pedestrians or bicycle rid-
ers, i.e. all types of movement that can be modelled by a road
network with a costs function.

Fig. 1. General idea to identify the target area

Fig. 1 presents the idea. We observe a driven route. At a
certain point we try to predict the targets. We can argue as fol-
lows:

 Area A would require the driver to turn and drive back,
thus this area unlikely covers the target.

 For area B, the driver would have chosen another route,
which, e.g., directly started in the opposite direction.

 Area C contains targets that would extend the existing
route in a reasonable way. We assume this area contains
the actual target.

We can thus identify two characteristics of the target: a)
reasonable route extensions do not contain any back-driving
and b) targets cannot be reached more efficiently by alternative
routes. We later express these properties as locally target ori-
ented (no back-driving) and globally target oriented (no alter-
native routes).

B. Preliminaries and Definitions

We assume a mechanism to identify a start of a movement.
A simple approach e.g. would monitor the current position and
separate halts (position remains nearly constants) from move-
ment (position significantly changes). We further assume a
mechanism that frequently stores the current position – not
necessarily with constant time intervals. Let P={p1,…pn} de-
note the set of stored positions. The positions are timely or-
dered by their index, thus we can define an ordering : pipj if
i<j, i.e. pi is measured before pj.

Essential for our approach is a graph model of the road
network consisting of nodes (crossings) and edges (road seg-
ments between crossings). To each edge we assign driving
costs – positive numbers that indicate a relevant measure that a
driver wants to minimize, e.g. driving distance, driving time or
fuel consumption. Costs can be computed beforehand from the
road geometry (including inclination), road type (e.g. motor-
way) and further properties (e.g. speed limit, pavement). We
presented an approach to compute a road network including
costs in [14], [15].

Let Q denote all crossings of the road network and c(qi, qj)
the driving costs between two connected crossings qi, qjQ.
Further definitions:

 c*(a, b) are the minimal costs (i.e. on the optimal route)
between a and b, where a, bPQ.

1

1),(*),(
b

ai
iiba ppcppk are real costs of the driven

route between pa, pbP, papb.

Q may contain several millions of crossings (approx. 11
million for Germany). c* can be computed using shortest path
algorithms (foremost A* or variations of A*). Important: origi-
nal routing algorithms such as A* minimize costs for routes
from crossing to crossing. Real routes, however, usually start
and terminate between crossings. There exist different solutions
to compute such routes. One is to include a virtual start and
target crossing. This sometimes is technically difficult as the
road network usually is stored in an optimized manner (e.g. in
compressed files) that cannot easily be changed at runtime.
Thus, we use more sophisticated approaches, such as described

in [15]. Independently from the actual choice, we assume that
c* may take any point in the road network, not only crossings.

Looking at the driven route, k is an approximation: we as-
sume that a driver optimally drives between two measured po-
sitions. If succeeding measurements are close enough, this as-
sumption obviously is useful.

Some properties: for pa, pb, pcP, papbpc; qi, qj, qkQ:

 k(pa, pb)c*(pa, pb) (1)

 k(pa, pc)=k(pa, pb)+k(pb, pc) (2)

 c*(qi, qk)c*(qi, qj)+c*(qj, qk) (3)

 c*(pa, qi)k(pa, pb)+c*(pb, qi) (4)

 if c*(pa, qi)=k(pa, pb)+c*(pb, qi) then
 pb is part of the optimal route from pa to qi (5)

(3) is also known as triangle inequality of road networks.
(4) follows from (1)-(3). The right side in (5) is obviously a
segmentation of the optimal route, thus k(pa, pb) represents the
optimal path from pa to pb.

C. Measuring the Target Orientation

In the following we model the degree of efficiency, called
the target orientation. Even though we are in principle free to
create any model that can be mathematically formulated, only
few formulas (especially ours) provide an efficient approach to
predict extensions. We introduce for pa, pbP, papb

),(

),(*
),(

ba

ba
ba ppk

ppc
ppt (6)

that represents the degree of target orientation for a part of
the driven route. We further define t(pa, pa)=1 and for pbP,
dist>0

),(),(babd pptpdistt where }),(|{ distppkiMINa bi (7)

Some properties: 0t(pa, pb)1, td(, pa)=t(1, pa), td(0, pa)=
1. Values of t can be interpreted as follows: t(pa, pb)1: optimal
or nearly optimal route, t(pa, pb)=0.5: driver needs twice as
much as optimal route and t(pa, pb)0: route was a roundtrip.
Thus, t, td provide appropriate measures for how target oriented
the route was. To reflect the two different requirements for
targets (as described in section A), we introduce a global and
local target orientation property for route point pa:

),()(adaglobal ptpt (8)

),()(alocaldalocal pctpt (9)

tglobal relates the optimal route to the driven route and de-
tects alternative routes. tlocal indicates the target orientation for
the 'last mile' of the route and detects back-driving. clocal speci-

fies the distance, where a difference from the optimal route is a
result of wrong driving and not a result of a reasonable alterna-
tive route. It is expressed in the respective cost model. Useful
values are e.g. 60 seconds (if costs are driving times) or 600
meters (if costs are distances).

We cannot expect a driver to always drive theoretically op-
timal routes, because a) people's brains do not execute optimal
route planning algorithms and more important b) the underly-
ing cost model does not necessarily reflect the real world. Peo-
ple often know better routes than route planning tools. To con-
sider alternative routes with slightly higher costs, we use the
following definition of target orientation:

 a route point pa is target oriented, if tlocal(pa)local and
tglobal(pa)global;

 a route is target oriented, if all its route points are target
oriented.

Typical values are global=0.8, local=0.7. We are now able
to model a driver's intention by the tuple (c, clocal, global, local).

D. The g Array

Our goal is to find a mechanism to extend a driven route
that holds a certain degree of target orientation without the use
of brute-force algorithms. More formally: given a driven route
P that is target oriented according to (c, clocal, global, local);
compute all targets qi that extend the driven route to a target
oriented route.

A brute force algorithm would iterate through all nodes qi
in the road network and measure the target orientation. But as t
requires the costly computation of c* (with computation times
of several 100 ms for longer routes), this approach is not rea-
sonable for millions of crossings.

Our approach is based on g arrays (named after the cost ar-
ray in A* [18]). They store for a certain start pa and crossing qi
the minimal costs from start to qi. More formally:

otherwise1

conditions required fulfils if),(*
][iia

a

qqpc
ig (10)

The array may only partly be filled. We use a Dijkstra ap-
proach that can also be considered as A* without a target and
the trivial estimation ([18], [19]). We may define an upper
bound cmax for g values, i.e. only target crossings are consid-
ered that can be reached within a certain cost limit. In addition
we can define a condition (see below). If a crossing later has a
non-negative g entry, this condition is true for the crossing and
for all crossings on the optimal path from pa to this crossing.

The idea of this algorithm is to take the next non-closed
crossing with the lowest current distance from the start. This
crossing is then expanded: we check if its neighbours use this
crossing as last hop. The most expensive operation is 'identify
the qi with minimal ga[qi]'. If we use an ordered list to imple-
ment the set open, we can reduce the lookup costs for the next
crossing to log(|open|).

We can sketch the algorithm to create g arrays as follows:

compute_g(a, cmax, condition)
 closed{}; open{pa};
 ga[a]0; ga[qi] -1 for all qipa;
 do {
 identify qiopen with minimal ga[qi];
 openopen\{qi}; closedclosed {qi};
 if not condition { ga[qi] -1; continue; }
 for all neighbours qj of qi { // expand crossing
 if qj closed {
 gnew=ga[qi]+c(qi, qj);
 if gnewcmax and (qj open or gnew<ga[qj]) {
 openopen {qj};
 ga[qj]gnew;
 memorize link qiqj if required // *
 }
 }
 }
 } while open {};
 return ga;

For better clearness, we assume paQ. As stated above, this
is not necessarily true, but the respective solutions (e.g. insert
pa as a virtual crossing) would overload the code above. In
addition, efficient implementations model not visited, open,
closed as states attached to a crossing, thus, element-of checks
and set operations are executed in constant time.

Note that sometimes we do not only want to know the costs
to a certain crossing but also the optimal route to get there. If
required, we can store the last link to each crossing (* in the
pseudo code above), thus can easily collect the entire route.

E. Extrapolation of Target Oriented Routes into the Future

The goal is to extend a driven route that holds a certain de-
gree of target orientation to all possible routes that also hold
this degree of target orientation. The endpoints of these routes
form the target region. We start with an observation. Consider,
we compute

 g1compute_g(1, , true);
 gncompute_g(n, , true);
 Tnaive{qi | g1[qi] – gn[qi]=c*(p1, pn) };

According to property (5), all crossings inside Tnaive are op-
timal extensions of the route p1 to pn. Thus, this algorithm pro-
vides a first version to compute a target region. The great bene-
fit: we avoid brute force as we mainly have to subtract two
arrays. However, we have some disadvantages:

 The g arrays of p1 and pn have to be fully generated.

 Only optimal routes (according to c) are considered.

 Only the first and last route points are considered, not
inner points of the driven route.

Even though Tnaive does not fully reflect the driver's inten-
tion, it forms the basis for our approach. The improvement of
this naïve approach: rather than only collection fully optimal
routes, we use our notion of target orientation that takes into
account the entire driven route. For this, we first define rea-
sonable extensions of t, td, tglobal and tlocal:

),(*),(

),(*
),,(

ibba

ia
ibaex qpcppk

qpc
qppt

 (11)

),,(),,(ibaexibexd qpptqpdistt where

 }),(*),({ distqpcppkjMINa ibbj (12)

),,(),(iaexdiaexglobal qptqpt (13)

),,(),(ialocalexdiaexlocal qpctqpt (14)

The idea behind tex is similar to t: it relates optimal routes to
driven routes, but it does not only consider routes from pa to pb,
but also their possible extensions to a crossing qi. The meas-
ured route now consists of two parts: the driven route pa to pb
and the possible extension pb to qi. As the extension is un-
known and we want to know whether the driver in principle
can reach this crossing in a target oriented manner, we assume
the optimal route pb to qi. As a result, tex and texd are reasonable
extensions of t and td respectively. We now can define the tar-
get region:

localinexlocal

globalinexglobaliglobloc

qpt

qptqT

),(

),(|
 (15)

We sketch the code for Tglobloc as follows.

find_dist(d, b) // Find the first route point that
 // has distance up to d to route point pb
 jb; mb;
 while (j1 and k(pj, pb)d) { mj; jj–1; }
 return m;

t_exglobal(a, qi) // Compute texglobal
 return g1[qi]/(k(p1, pa)+ga[qi]);

t_exlocal(a, qi) // Compute texlocal
 jfind_dist(clocal – ga[qi], a);
 return gj[qi]/(k(pj, pa)+ga[qi]);

T_globloc() // Compute Tglobloc
 g1compute_g(1, cmax, true); // required for texglobal

 jminmax(2, find_dist(clocal, n)); // first array for texlocal
 for j from jmin to n–1 // further arrays for texlocal
 gjcompute_g(j, , g1[qi]0);
 gncompute_g(n, , g1[qi]0 and
 t_exglobal(n, qi)≥global and
 t_exlocal(n, qi)≥local);
 return all qi with gn[qi]0;

The pseudo code for find_dist only provides the idea and is
simplified for better clearness. An efficient implementation
would use a binary search approach to find the appropriate
route point j. Another optimization: k (and thus c*) are com-
puted very often for the same values. It is reasonable to pre-
compute and store k(pa, pb) once for every pair pa, pb of route
points papb.

The developer can set an appropriate value of cmax that de-
fines the maximum route length for which target areas are

computed. We process the value during the generation of g1.
Further g arrays do not go beyond cmax because of the condition
g1[qi]0.

Fig. 2 shows target regions of driven routes. Actually, the
target region is a set of crossings. For better clearness, we
painted the concave hull of these crossings.

F. Improving Execution Time

In the algorithm above, the array creation gn only expands
crossings, if they hold the global and local condition, as on a
target oriented route every crossing must hold both conditions.
Thus, we can significantly reduce the expansion cost for the
last array, if we only expand crossings that actually can be part
of a target oriented route.

We can significantly reduce the g array creation even more,
if we consider a property of tex. For three route points pa, pb1,
pb2 (papb1pb2), crossing qi:),,(),,(12 ibaexibaex qpptqppt ,

because

),(*),(

),(*
),,(

22
2

ibba

ia
ibaex qpcppk

qpc
qppt

),(*),(),(

),(*

2211

(2)

ibbbba

ia

qpcppkppk

qpc

),,(
),(*),(

),(*
1

11

(4)

ibaex
ibba

ia qppt
qpcppk

qpc

 (16)

An important consequence of (16): for two route points pa1,
pa2 (pa1pa2), crossing qi: if globaliaexglobal qpt),(1 then also

globaliaexglobal qpt),(2 . Proof:

),,(),(111 iaexiaexglobal qpptqpt ,

),,(),(212 iaexiaexglobal qpptqpt ,

because of (16)),(),(12 iaexglobaliaexglobal qptqpt ,

 thus finally globaliaexglobal qpt),(2 (17)

(17) is useful to limit the g array creation: if a certain node
qi is not globally target oriented for a route point pa1, it also
cannot be globally target oriented for a subsequent route point
pa2, thus we can exclude qi for all further g arrays. Unfortu-
nately, there is no such rule for the local target orientation.
However, this property already significantly safes processing
time.

Based on this consideration, we now can formulate an im-
proved algorithm to compute Tglobloc.

Fig. 2. Example target regions (global=0.8, local =0.7, clocal=60 s, cmax=1 h)

T_globloc() // Compute Tglobloc
 g1compute_g(1, cmax, true); // required for texglobal

 last1;
 jminmax(2, find_dist(clocal, n)); // first array for texlocal

 for j from jmin to n–1 { // further arrays for texlocal
 gjcompute_g(j, , glast[qi]0 and
 t_exglobal(j, qi)≥global); // (17)
 lastj;
 }
 gncompute_g(n, , glast[qi]0 and
 t_exglobal(n, qi)≥global and
 t_exlocal(n, qi)≥local);
 return all qi with gn[qi]0;

G. Consecutive Execution

Until now we strongly separated the collection of route
points from target region computation. It is computed not be-
fore a driven route is completed to a certain point. Many usage
scenarios, however, prefer an execution that consecutively
processes route points one after another. E.g. consider an appli-
cation that warns a driver whenever a potential target requires a
road charge. As there is no certain route point to warn, the ap-
plication wants to refine the target region for every new route
point. We can easily modify the algorithm above to a consecu-
tive variation:

process_globloc(n)
 if n=1
 g1compute_g(1, cmax, true); // required for texglobal
 else {
 gncompute_g(n, , gn-1[qi]0 and
 t_exglobal(n, qi)≥global); // (17)
 jminmax(2, find_dist(clocal, n));
 for m from 2 to jmin–1 // remove no longer used g arrays
 if gm exists then remove gm from memory;
 }

compute_globloc()
 return all qi with gn[qi]0 and
 t_exlocal(n, qi)≥local;

We use the code as follows:

 we call process_globloc(n) for every new route point pn
after it is measured;

 we call compute_globloc(), whenever we want to com-
pute a target region based on the recently processed
route points.

Inside compute_globloc() a real implementation would not
iterate through all g array elements to collect target crossings.
Instead, we would include this condition into compute_g.
However, this improvement would overload the pseudo code
above.

It depends on the actual application whether the consecu-
tive variation is more suitable than the original version. The
consecutive variation has to compute all g arrays – some of
them may not be used later. On the other hand, a target region
can be requested at any time without significant further com-
putation.

Fig. 3 shows statistics of the consecutive executions of the
two left routes in Fig. 2. We measured the number of g entries
in memory that have an assignment (a non-negative value) and
the number of newly expanded crossings. The values are pre-
sented for every route point, thus indicate the current memory
and runtime requirement.

Note that the actual memory requirement for g entries can
be higher, if we, e.g., model the g array as an actual array in
program languages (e.g. int[] g) for runtime reasons. Then, we
had to store a huge number of -1 values. In contrast, we may
safe storage space (with the cost of longer runtime) and only
store non-negative values in a hash table. It depends on the
developer's choice, who should take into account the intended
runtime environment, e.g. whether the algorithm should run on
a smart phone device or server.

To give some impression about the memory requirements:
we can store cost value, crossing state, link ID and crossing IDs
in a packed structure of 10 bytes. The examples above require
up to 2 million stored entries, i.e. 19 MByte of memory solely
for the stored values. The organisation as a hash table requires
additional memory (highly implementation-dependent thus
difficult to determine). But as a result, the memory require-
ments for this algorithm cannot be considered as critical.

Fig. 3. Memory requirement and number of expansions

Looking at the runtime: most time-consuming are the com-
pute_g calls. We measure the execution time on a typical PC
(Intel Core i7-2600 CPU 3.4 GHz). It can execute 1.39 million
crossing expansions per second. Based on the cmax above we re-
quire up to 0.32 million expansions per measured route point.
Thus, execution time also is not critical.

In the charts, we can easily see a stepwise reduction of ex-
panded crossing and stored g entries. Each reduction step is a
result of passing a significant crossing that further confines the
potential targets. If, e.g. the driver does not leave at a motor-
way exit, the locations connected to this exit are obviously not
part of the target region. Due to the nature of our approach,
such locations are then automatically removed from the next
steps.

H. Further Processing of Target Areas

Until now, we consider a target region as the set of cross-
ings (Fig. 4 top left). Regardless of the target, the intention of a
trip is to stay somewhere or do something at the destination.
Thus, the actual destination is usually not part of the road net-
work, but somewhere in the nearer area. Further processing
that reflects the actual intention is highly dependent on the ac-
tual service. However, here is a list of possible actions:

1. We remove road types from the result that usually are not
target of a trip, but only passed over. Good examples are mo-
torways: people usually do not drive to a certain motorway

position as a final destination. We thus first remove all targets
that belong to such road types (Fig. 4 top right).

2. We switch from a topological to a geometric representa-
tion, needed for further spatial queries (Fig. 4 bottom left). We
perform the following steps: a) Collect waypoint coordinates of
result links. b) Create a concave hull of these coordinates – a
closed polygon that encloses a set of given positions. In con-
trast to the convex hull, there is no unique concave hull – usu-
ally a parameter specifies how much the polygon geometrically
adapts to the given coordinates. We use an approach based on
the Delaunay triangulation that requires O(n log n) steps [1].
Finally c) we may enlarge the polygon by some meters using
the so-called buffer operation. This is because the actual target
may be a neighbouring area of a road.

3. With the area polygon we can perform spatial queries on
geo databases. We use our HomeRun platform [16], [17] that
e.g. supports reverse geocoding requests (Fig. 4 bottom right).
It answers for any given geometry: a) In which larger objects is
this geometry embedded, e.g. country, state, city. b) The postal
addresses enclosed by this geometry. c) Remarkable objects,
e.g. shops, schools that are enclosed by the area geometry.

The types of relevant objects differ between applications.
E.g. a driver support application may only be interested in free
parking, whereas a tourist app may query touristic sight. A spe-
cific application or service can easily set specific object filters
to only get interesting objects.

Fig. 4. Further processing steps of target regions

Further derived data are: the area size of the target area
(how clear is the algorithm about the target), the distance to the
farthest position of the target region (how long may the trip
take in worst case) or which significant borders may be crossed
(e.g. tollgates).

IV. DISCUSSION, LIMITS

Even though the approach is effective, fully implemented
and provides surprisingly useful results, we have to discuss
some limitations:

1. The current approach does not take into account the car's
orientation. Usually, the orientation is obvious for a given
route, but we can construct scenarios where we assume the
wrong driving direction and finally a wrong target region. But
if there was a means to measure the orientation, we could eas-
ily integrate it into the k and c* functions.

2. Our target region is a set of crossings. For dense road
networks this is a suitable model, but if we have large roads
without any crossing, our target region border would only en-
close the last crossing, even though a suitable target could be
further away. To solve this problem, we had to evaluate tex val-
ues for outer crossings. This requires an adaption of our ap-
proach, as it currently explicitly avoids the processing of such
crossings.

3. For the consecutive execution, we have to 'guess' a cmax
value, as the future route (and its length) is unknown. If we go
beyond the cost border, the target area will be empty. We can
solve this with cmax=, but this would require more memory, at
least for the first g array.

4. We assume our positioning system can measure the posi-
tion precisely enough to assign the correct road. If not, our ap-
proach may easily assume a target disoriented route which
leads to wrong or empty target regions. As a solution, we may
use a map-matching approach that even can be improved by
our target orientation measurement. A basic precision of the
positioning system (such as provided by GPS) is essential.

5. Our approach currently does not support multimodal
routing. Consider what we call the 'park & ride problem': If the
intention of a first trip is to start a second trip with another
means of transportation, our approach may only predict the
first target.

V. CONCLUSIONS AND FUTURE WORK

We presented an efficient approach to predict a target re-
gion for a driven or walked route. The approach does not re-
quire a learning phase, thus can also be applied to routes that
are driven for the first time. The output can geometrically be
processed and used to query for significant objects in a spatial
database. We can use this approach as a building block for dif-
ferent applications and services.

The next steps will address some current limitations: we not
only want to collect crossings and links between crossings as
the target area, but also part of roads. This however requires to
restructure some algorithmic parts.

As a second goal: we also want to adapt the approach to
improve the position measurement.

REFERENCES
[1] M. Duckham, L. Kulik, M. Worboys and A. Galton, "Efficient genera-

tion of simple polygons for characterizing the shape of a set of points in
the plane", Journal Pattern Recognition, Vol. 41, Issue 10, Oct. 2008,
3224-3236

[2] L. Chen, M. Lv, Q. Ye, G. Chen, J. Woodward, "A personal route
prediction system based on trajectory data mining", Information Sci-
ences 181 (2011) 1264–1284

[3] L. Chen, M. Lv, G. Chen, "A system for destination and future route
prediction based on trajectory mining", Pervasive and Mobile Comput-
ing 6 (2010) 657–676

[4] V. Kostov, J. Ozawa, M. Yoshioka, T. Kudoh, "Travel Destination
Prediction Using Frequent Crossing Pattern from Driving History", Proc.
of the 8th Intern. IEEE Conf. on Intelligent Transportation Systems, Vi-
enna, Austria, Sept. 13-16, 2005

[5] T. Terada, M. Miyamae, Y. Kishino, K. Tanaka, S. Nishio, T. Naka-
gawa, Y. Yamaguch, "Design of a Car Navigation System that Predicts
User Destination", Proc. of the 7th Intern. Conf. on Mobile Data Man-
agement (MDM'06)

[6] R. Simmons, B. Browning, Y. Zhang, V. Sadekar, "Learning to Predict
Driver Route and Destination Intent", Proc. of the IEEE ITSC 2006 In-
telligent Transportation Systems, Toronto, Canada, Sept. 17-20, 2006

[7] K. Tanaka, Y. Kishino, T. Terada, S. Nishio, "A Destination Prediction
Method Using Driving Contexts and Trajectory for Car Navigation Sys-
tems", SAC’09 March 8-12, 2009, Honolulu, Hawaii

[8] J. Krumm, "Real Time Destination Prediction Based On Efficient
Routes", Microsoft Research, 2006-01-0811

[9] J. Froehlich, J. Krumm, "Route Prediction from Trip Observations",
Microsoft Research, 2008-01-0201

[10] K. Miyashita, T. Terada, S. Nishio, "A Map Matching Algorithm for Car
Navigation Systems that Predict User Destination", 22nd Intern. Conf on
Advanced Information Networking and Applications – Workshops,
AINAW 2008, 1551-1556

[11] J. Krumm, "A Markov Model for Driver Turn Prediction", Microsoft
Research, 2008-01-0195

[12] F. Nakahara, T. Murakami, "A Destination Prediction Method Based on
Behavioral Pattern Analysis of Nonperiodic Position Logs", 6th Inter.
Conf. on Mobile Computing and Ubiquitous Networking, May 23-24,
2012 Okinawa, Japan

[13] S. Elnekave, M. Last, O. Maimon, "Predicting Future Locations Using
Clusters' Centroids", ACMGIS’07, Nov. 7-9, 2007, Seattle

[14] J. Roth: "A Spatial Hashtable Optimized for Mobile Storage on Smart
Phones", in M. Werner, M. Haustein (eds.): 9. GI/ITG KuVS Workshop
Location based services and applications, Sept. 13-14 2012, Chemnitz,
Germany, 71-84

[15] J. Roth: "Modularisierte Routenplanung mit der donavio-Umgebung", in
M. Werner, M. Haustein (eds.): 9. GI/ITG KuVS Workshop Location
based services and applications, Sept. 13-14 2012, Chemnitz, Germany,
119-131 (in German)

[16] J. Roth: "Combining Symbolic and Spatial Exploratory Search – the
Homerun Explorer", Innovative Internet Computing Systems (I2CS),
Hagen, Germany, June 19-21, 2013, Fortschritt-Berichte VDI, Reihe 10,
No. 826, 94-108

[17] J. Roth: "Die HomeRun-Plattform für ortsbezogene Dienste außerhalb
des Massenmarktes", in A. Zipf, S. Lanig, M. Bauer (eds.) 6. GI/ITG
KuVS Workshop Location based services and applications, Heidelberger
Geographische Bausteine Heft 18, 2010 (in German)

[18] P. E. Hart, N. J. Nilsson, B. Raphael, "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths", IEEE Transactions on Systems
Science and Cybernetics SSC4 (2), 1968, 100–107

[19] E. W. Dijkstra: "A note on two problems in connexion with graphs",
Numerische Mathematik. 1, 1959, 269–271

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

