
181

H.Unger, T.Boehme, and A.Mikler (Eds.): I²CS 2002, LNCS 2346, pp. 181-192, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Mobility Support for Replicated
Real-Time Applications

Jörg Roth

University of Hagen
Department for Computer Science

58084 Hagen, Germany
Joerg.Roth@Fernuni-hagen.de

Abstract. Replicated real-time applications such as co-operative document
editors have to continuously update a shared state, thus require low network
delays. If we use such applications in mobile and weakly connected environ-
ments, state information often cannot be broadcasted immediately, and thus it is
difficult to maintain consistency. We discuss this problem with the help of
DreamTeam, our framework for distributed applications, which we extend to
the mobile version Pocket DreamTeam. The DreamTeam environment allows
the developer to generate replicated applications (e.g., collaborative diagram
tools, multi-user text editors, shared web browsers) in the same way as single
user applications, without struggling with network details or replication algo-
rithms. For our mobile extension, we suggest an architectural decomposition
according to the remote proxy pattern. This architecture has a number of
benefits: it tolerates weakly connected devices and allows a developer to
heavily re-use existing stationary applications.

1 Introduction

Replicated real-time applications play a major role for e.g. shared document editors,
co-operative software development environments or shared workspaces. Replicated
states are a basis for collaborative multi-user applications, which allow geographically
distributed teams to collaborate without significant time delays. Replicated real-time
applications store their state information on each participating site without the need
for a central server. They have, compared to applications with centralised architec-
tures, a lower response time, since state information is available locally. The network
and processing load is distributed among all sites, thus performance bottlenecks are
avoided.

To support developers of replicated real-time applications or synchronous group-
ware we developed the DreamTeam platform [6, 10]. We successfully used Dream-
Team for practical software courses and diploma theses at the University of Hagen.
There exists a huge variety of about 20 DreamTeam applications such as a distributed
sketch tool, a diagram tool, text editor, a collaborative slide presentation program, a
brainstorming tool and a group web browser.

Currently, there exists a growing market for mobile devices such as PDAs, mobile
phones, electronic pens etc. Upcoming communication technologies like UMTS and

Jörg Roth

182

Bluetooth promise new services for mobile communication. We strongly believe that
mobile computing combined with distributed applications provides a great potential,
thus we want to extend the DreamTeam architecture to support mobile users. The
corresponding DreamTeam extension called Pocket DreamTeam should support
weakly connected devices with reduced computational power and limited input/output
capabilities. The Pocket version and the stationary version of DreamTeam should run
inside the same network. To save development costs, existing shared applications
based on the old DreamTeam platform should run without any modification.

The problems to create a mobile platform extension are manifold. In this paper we
focus on two major problem areas:
• Replication strategies based on low network delays and high network reliability are

not suitable for wireless networks, which still suffer from temporary disconnec-
tions and high latency. Thus, we adapted the existing DreamTeam replication
mechanism [10] to support mobile devices.

• A developer of mobile replicated applications has to develop for stationary as well
as for mobile computers with completely different characteristics. To reduce
development costs, we introduce an approach, which allows the developer to re-use
code of the functional core for both platforms.

Before we present our approach in more detail, we discuss related work.

2 Related Work

Several toolkits have been developed so far to address consistency problems in mo-
bile environments. Coda [4] provides a distributed file system similar to NFS, but
allows disconnected operations. Applications based on Coda are fully mobility trans-
parent, i.e. run inside a mobile environment without any modification. Disconnected
mobile nodes have access to remote files via a cache. Operations on files are logged
and automatically applied to the server when the client re-connects. Coda applications
can either define themselves mechanisms for detecting and resolving conflicts or ask
the user in case of conflicts. A follow-on platform, Odyssey [9], extends data distri-
bution to multimedia data such as video or audio data. To support real-time data,
bandwidths and available resources have to be monitored. Odyssey applications are
mobility aware.

Rover [3] supports mobility transparent as well as mobility aware applications. To
run without modification, network-based applications such as web browsers and news
readers can use network proxies. The development of mobility aware applications is
supported by two mechanisms: relocated dynamic objects (RDOs) and queued remote
procedure calls (QRPC). RDOs contain mobile code and data and can reside on a
server as well as on a mobile node. During disconnection, QRPCs are applied to
cached RDOs. As in Coda, operations are logged and applied to server data after re-
connecting.

Bayou [19] provides data distribution with the help of a number of servers, thus
segmented networks can be handled. In contrast to Coda, replicated records are still
accessible, even when conflicts were detected but not resolved. Bayou applications
have to provide a conflict detection and resolution mechanism, thus user intervention
is not necessary. Bayou is not designed to support real-time applications.

Mobility Support for Replicated Real-Time Applications

183

Sync [7] allows asynchronous collaboration between mobile users. Sync provides
collaboration based on shared objects, which can be derived from a Java library. As in
Bayou, data conflicts are handled by the application. Sync applications have to pro-
vide a merge matrix, which contains a resulting operation for each pair of possible
conflicting operations. With the help of the merge matrix, conflicts can be resolved
automatically.

Lotus Notes [5] has not primarily been designed for mobile computers, but allows
replicated data management in heterogeneous networks. Nodes can be disconnected
and merge their data after re-connection. Data in Lotus Notes have a record structure.
Fields may contain arbitrary data, which are transparent to Notes. Records can be read
or changed on different nodes simultaneously. When re-connecting, users resolve
conflicting updates.

A completely different approach to support mobile users introduces Pebbles [8]. It
allows users to remotely control applications running on a server. It follows a collabo-
ration and mobility transparent concept. Instead of using the mouse and keyboard
directly, input is taken from the touch screen and handwriting area. It is possible to
remotely control off-the-shelve applications (e.g. MS Word) with handheld devices.

As a last example, we want to mention our own mobile platform QuickStep [11,
14]. The replication mechanism based on the database abstraction integrated into
most handheld operating systems [1]. The consistency strategy relies on a strong
connection between data rows and involved users. Although QuickStep was primarily
designed to exchange well-structured record-oriented data among a group of mobile
handheld users, it highly influenced our second platform Pocket DreamTeam.

3 Pocket DreamTeam

The original DreamTeam environment mainly consists of a huge hierarchical class li-
brary with approx. 200 classes and 125000 lines of code. The stationary part is
entirely written in Java, which can be run on many operating systems, e.g. Windows,
Linux or Solaris. The mobile part is written in C++. A runtime environment
establishes the underlying task structure and provides a front-end for configuring and
controlling the system. It is divided into eight so-called managers. Each manager runs
independently in the background and performs a specific task. E.g., the Session
Manager handles session profiles, starts and stops sessions and supports joining and
leaving sessions. The Connection Manager is active during a session and handles the
communication between shared applications. It provides multicast mechanisms for
information distribution between participating sites. The Rendezvous Manager offers
services for activities before a session begins, including, e.g., session announcement
to other team members.

Fig. 1 shows the stationary DreamTeam runtime stack with two sites. In reality, we
often have sessions with more sites. To simplify this figure, we only show one
groupware application. Usually, more than one application runs in a collaborative
session simultaneously. We distinguish three levels of communication:

Jörg Roth

184

OS/Network

DreamTeam
Managers

Resources

User Interface

TCP/UDP/
Multicast IP

Application
Level

Platform
Level

Network
Level

G
roupw

are
Application

OS/Network

DreamTeam
Managers

Resources

User Interface

G
ro

up
w

ar
e

Ap
pl

ic
at

io
n

Management
Protocols

Inter-site Calls
Consistency
Replication

Fig. 1. The DreamTeam runtime and communication stack (stationary version)

• On network level, DreamTeam uses the Internet protocols TCP, UDP and, if
available, native multicast with Multicast IP. The latter provides better scalability
if a session contains a large number of communicating sites. Since Multicast IP
does not provide reliable data transport, we integrated a reliable multicast layer
into the platform.

• On platform level, each manager runs its own protocol. The most important proto-
cols are the rendezvous protocol, the session management protocol, the protocol
for member registration and the resource management protocol.

• The application level is the only level, an application developer perceives. On this
level, we find state replication and consistency management as described in the
next section.

3.1 Replication in a Stationary Environment

DreamTeam is based on a fully replicated communication infrastructure. Each site
involved in a collaborative session is logically connected to each other site and runs
an own instance of the shared application.

Distributed applications are built up of so-called resources. Resources are the
shared building blocks of an application, e.g. shared texts, shared diagram elements,
shared web pages or shared slides in a slide presentation tool. Resources can commu-
nicate with their corresponding peer resources by so-called inter-site calls – method
calls which are synchronously executed on all participating sites. E.g. an inter-site call

anyResource.anyMethod(param
1
, ..., param

n
);

executes the method anyMethod on all replicated resource instances of anyRe-
source in the session. To distinguish inter-site calls from local calls, the developer
has to enter a specific keyword in the program code. Inter-site calls can roughly be
compared to the remote method invocation (RMI) concept of Java. As a major
difference, inter-site calls are sent to more than one site. In addition, the developer has
not to manually load remote instances, since the runtime system builds up the identi-
cal resource structure on all sites automatically. The replicated structure makes all
resources available locally. Inside a site, standard programming mechanism can be
used without the need for an additional communication layer. This leads to efficient
and straightforward application structures.

Mobility Support for Replicated Real-Time Applications

185

We first discuss the simple replication with only stationary users. To ensure con-
sistency of concurrent updates, the runtime system requests pessimistic locks for each
inter-site call without any developer's intervention. DreamTeam uses distributed locks
as introduced by Suzuki and Kasami [18]. If an application changes a resource R by
means of an inter-site call I(R), the runtime system performs the following opera-
tions:

request(L(R))
apply I(R) to resource R
multicast I(R) to other sites
release(L(R))

Here, L(R) denotes the lock associated to R. The request statement blocks, when
the lock is currently in use. This is acceptable in the stationary DreamTeam environ-
ment, where connections are reliable and fast. Thus, delays caused by locks are
usually very short. The developer can override this generic scheme to increase parallel
execution capabilities if consistency can be relaxed.

3.2 Replication in a Mobile Environment

Finding an appropriate architecture for the mobile extension is of central importance.
To have real-time applications and weakly connected devices at the same time results
in conflicting requirements: on one hand, updates of resource states should be
distributed to all participants in real-time. On the other hand, disconnections are
unavoidable in wireless networks. Often, handheld devices are simply disconnected
because of auto-power-off services carried out by the operating system to safe battery
power.

We resolve this conflict with the help of a design pattern called the remote proxy
pattern [12]: the mobile device does not connect directly to other sites, but asks
another computer, called the proxy, to act as a placeholder. The proxy performs
heavy-duty tasks and stores data when the mobile device goes off-line. The idea of
proxy pattern in general is not new. The first proxy pattern designed to describe net-
worked applications was introduced by Shapiro [15]. His concept contains a client, a
service, which the client wants to use across a network, and a proxy, which mediates
between client and service. A similar idea was presented by Silva et al. [16]. Their
proxy, called the distributed proxy, has a very fine-grained definition, which divides a
system into client, server, client proxy, server proxy, client communicator and server
communicator. This fine-grained definition is too specific for our intended domain,
since only few systems meet this architecture in reality.

Shapiro's and Silva's proxies conceptually differ from the remote proxy pattern. As
a major difference, the remote proxy pattern assigns the client and proxy processes to
different computers. This offers the required flexibility to solve our problem.

Fig. 2 shows the resulting architecture. Components on the right side, i.e. existing
DreamTeam installations, remain unmodified. The protocols on network, platform
and application levels of stationary sites are identical to proxy protocols. Thus,
DreamTeam systems can, from the viewpoint of communication, not distinguish
mobile from stationary users. This saves implementation costs, since the proxy can
use most of the DreamTeam managers without modification.

Jörg Roth

186

Pocket DreamTeam and Mobile Applications Unmodified Platform and
Applications

Mobile Segment Stationary Segment

wired
network

Application
Level

Platform
Level

Network
LevelOS/Network

DreamTeam
Managers

Resources

User Interface G
roupw

are
Application

OS/Network

Pocket DreamTeam
(Proxy Version)

ResourcesG
ro

up
w

ar
e

Ap
pl

ic
at

io
n

OS/Network

Pocket DreamTeam
(Mobile Version)

Cached Resources

User Interface

wireless
network

Fig. 2. The extended DreamTeam architecture with mobility support

The network is divided into a mobile and a stationary segment. A mobile groupware
application has parts running on both segments. This seems to be a high burden, as
parts of one application instance have to communicate across the network. We will
see in a later section that the runtime system carries out most of the required commu-
nication services automatically.

Handheld users request low response time, for e.g. screen updates, even if the un-
derlying wireless network causes high latencies. As a rule, handheld applications have
to process user events in less than one second [1]. Thus, the mobile device stores for
each resource a corresponding cached resource. The runtime system automatically
updates cached resources when the original resources change their state.

3.3 Joining a Session

When a mobile user wants to join a session, the system has to perform three steps:
1. In the first step, a mobile device has to look up a proxy. A groupware infrastructure

may have an arbitrary number of proxies running in stand-by mode. The proxy dis-
covery protocol uses broadcast to ask all computers in a network whether they
offer the proxy service. If the network supports DHCP (Dynamic Host Configura-
tion Protocol), we can add the proxy address to the DHCP service record, which is
passed to a mobile device when it enters a new subnet.

2. The proxy performs a group rendezvous [13], i.e. it looks up other DreamTeam
sites that are currently on-line. Note, that there is no central server where Dream-
Team sites are registered, thus the rendezvous protocol has to run completely de-
centralised.

3. The Session Manager on the proxy performs a join operation [10]. This operation
copies the current resource structure from another participant and loads the current
state information. Since other members change resources concurrently during the
join operation, a complex protocol has to avoid race conditions.

Mobility Support for Replicated Real-Time Applications

187

3.4 The Role of the Proxy

In this architecture, a proxy computer has an important role, thus we have to discuss
problems related to disabled or disconnected proxies. There exist three variations of
this problem:

The proxy disconnects from other session members, but still has contact to the
mobile device: In this case, the stationary network is partitioned into two or more
segments. The proxy automatically performs a leave operation. The mobile user
cannot collaborate with other session members, but can rejoin as soon as the interrup-
tion ends (steps 2 and 3 in section 3.3).

The proxy disconnects from the mobile user, but still has contact to the stationary
segment: This case is more likely, since the mobile segment is much more prone for
disconnections than the stationary segment. Other session members can continue
without interruption. The proxy keeps track of all shared state changes, thus the
mobile user can continue immediately after re-connection. During disconnection, a
user can continue her or his work on the cached resources. Inter-site calls cannot be
performed directly, as a network connection is a prerequisite for modifying a shared
state. They have to either return an error or have to be queued up. In principle, it is
possible to pass an arbitrary number of queued inter-site calls to the proxy after re-
connection. Too large queues however may confuse users, thus the application devel-
oper can limit the size of the inter-site queue. Note that during disconnection other
users may modify the shared state. Nevertheless, the consistency concept (see next
section) preserves consistency of the shared state.

If a mobile user is disconnected longer than a certain time (e.g. some minutes), a
leave operation is performed. In this case, the mobile user can look up another proxy
inside the network and rejoin (steps 1 to 3 in section 3.3)

The proxy disconnects from both segments or breaks down: This is a combination
of the cases above. Since application states stored inside the resources are replicated,
no information gets lost.

3.5 Consistency

Obtaining consistency of shared data is a crucial point in weakly connected systems.
Having loosely connected devices, we cannot solely use pessimistic locks any longer.
A mobile device holding a lock could be disconnected for a certain time, thus other
members would be blocked for a long time.

Pocket DreamTeam provides a hybrid approach for concurrency control: we use
pessimistic locks for the stationary segment and optimistic conflict detection and
resolution [4, 19] for the mobile segment. For this, the proxy contains two threads,
which wait for incoming messages. The first thread waits for inter-site calls from
other participants (i.e. all session members apart from the associated mobile member).
We outline the thread as follows:

do {
 receive inter-site call I(R) from other site
 // note: other site already requested the lock
 apply I(R) to local resource R
 increase T(R)
 if (mobile device is on-line)

Jörg Roth

188

 send state of R and T(R) to mobile device
 else
 store state and T(R) and send when device re-connects
} until (session stops)

This thread updates the local resource state continuously. In addition, it copies new
states to the mobile device, which stores them in its cache. T(R) denotes a logical
timestamp used in the second thread for conflict detection. The second thread waits
for messages from the mobile device:

do {
 receive inter-site call I(R) and T'(R) from mob. device
 request(L(R))
 if (T'(R)<>T(R)) // i.e. conflict!
 solve conflict
 // i.e. generate new I(R) without conflicts
 apply I(R) to resource R
 increase T(R)
 send state of R and T(R) to mobile device
 multicast inter-site call I(R) to other sites
 release(L(R))
} until (session stops)

To detect conflicts, the mobile device sends in addition to I(R) the logical time-
stamp T'(R) of the last cache copy of R. This allows the proxy to detect easily,
whether I(R) is associated to an older copy of R. In this case, the proxy has to per-
form a conflict resolution. Two generic conflict resolution strategies are:
• Inew(R):=I(R), i.e. the mobile device has priority,
• Inew(R):=null operation, i.e. other members have priority. This is the

generic way for Pocket DreamTeam to resolve conflicts.
Sometimes, a more fine-grained resolution strategy suits better. An optimal strategy
takes into account the state of R, which the mobile device has perceived before it
applied I(R). We can get this state in two ways:
• The mobile device sends in addition to I(R) and T'(R) the old state of R. This

however increases network traffic.
• The proxy stores old states in a hash table and uses T(R) as key. Whenever it

receives a new timestamp T'(R), it can remove older entries.
With this extension, we could implement even complex consistency algorithms based
on operational transformation [2]. Note that the consistency mechanism realised
inside the platform ensures data consistency on a basic level. An application devel-
oper however is free to implement high-level strategies based on e.g. social protocols.
A shared text editor can, e.g., offer functions to reserve text paragraphs for exclusive
editing. Such strategies are highly application-dependent and not part of the platform.
Nevertheless, they require low-level consistency of data as provided by our consis-
tency mechanism.

3.6 Implementation Issues

Realising software for handheld devices is hard work, since developers have to deal
with small memories, slow processors and restricted operating system capabilities.
Pocket DreamTeam requires portions of code on the handheld under C++ as well as

Mobility Support for Replicated Real-Time Applications

189

portions under Java. One design goal of Pocket DreamTeam was to heavily re-use
stationary portions in mobile applications. In order to create a Pocket DreamTeam
application, we have to perform four steps:
1. For the proxy portion, we can copy resources from the stationary version. We have

to add code for marshalling/unmarshalling the state, since state information is
transferred across language borders (Java to C++).

2. We have to add code for conflict resolution, if the generic strategy is not suitable.
3. For the mobile portion, we have to transfer parts of the resource code to the target

platform (i.e. C++). As a minimum we have to code all data fields. The runtime
system automatically passes inter-site calls to the proxy. The proxy in turn per-
forms the appropriate state change and sends the new resource state back. This can
cause long turn-around times. As a solution, we can transfer time-critical inter-site
calls to the mobile device, which then modify cached state directly.

4. We implement the rest of the mobile portion, especially the user interface, like a
single user application without considering communication or replication issues.

3.7 Testing Environment and Sample Applications

We completely implemented and tested Pocket DreamTeam. As a technical platform
for mobile end-user devices we use handhelds as shown in fig. 3. We in particular
decided not to use notebooks. Due to their size, weight and battery life, mobile
working capabilities with notebooks are limited.

Fig. 3. End-user device with Pocket DreamTeam running a collaborative diagram application

Our development and testing system consists of
• two handheld devices (Palm m505 with PalmOS 4.0) equipped with wireless LAN

(IEEE 802.11b) adapters,
• a number of stationary workstations (Windows PCs, Solaris workstations),
• a wireless LAN infrastructure connected with the campus Internet.
Although our testing environment primarily bases on wireless LAN, we strictly paid
attention to be as independent as possible of the network. In principle, Pocket Dream-

Jörg Roth

190

Team could run on other wireless networks such as IrDA (Infrared), Bluetooth or
GSM. Since not all networks support the Internet Protocol (IP) sufficiently, we
isolated network related functions in a component we call Network Kernel Frame-
work (NKF). NKF can roughly be compared to a network driver and offers a uniform
interface to higher communication layers.

As mentioned above, software for the end-user devices were coded in C++. Even
though Java would fit much better into the overall system architecture, the handheld
version (Java Micro Edition) was not capable enough for our project. We decided to
use the well-established development environment CodeWarrior for PalmOS.

To test the concept, we implemented the DreamTeam core applications as well as
two groupware applications on top of Pocket DreamTeam.

Fig. 4. Groupware applications on mobile device (left) and desktop (right)

Fig. 4 shows Pocket DreamTeam windows (left) and the corresponding desktop
DreamTeam windows (right). Corresponding screens on different platforms may look
completely different. Overlapping windows, context menus and icons are not useful
on small screens. E.g., we replaced icon-based dialogs by simple textual lists.

The users use the upper frames to view contextual information and control
sessions. The On-line list shows all users, which are currently on-line, i.e. can partici-
pate in a collaborative session. The Sessions frame shows all running and planned
sessions. A user can select a running session from a list and join. From the 20 Dream-
Team applications, we selected two applications for mobile extension:
• The Diagram tool allows a team to collaboratively create diagrams such as flow

charts, entity relation ship or class diagrams.
• With the Draw tool, a group can draw and share simple free-hand sketches.
To realise these applications, we performed the steps as described in section 3.5:
1. For e.g. a diagram resource (i.e. a rectangle or a circle) we had to enter code to

marshall the co-ordinates, size, colour etc.
2. Draw as a very simple application uses the generic resolution method. Diagram is

more complex. Conflicts occur, when two users modify the same resource simulta-
neously. Our conflict resolution method first investigates, whether the modification

Mobility Support for Replicated Real-Time Applications

191

affects the same data fields. If not, we apply both modifications, since no real con-
flict occurs. Otherwise, we branch to the generic conflict resolution.

3. To increase performance of the Draw application, we transferred the method,
which adds a line to the sketch to the mobile device. This significantly improves
response time during free-hand drawing.

4. We implemented all dialog frames, menus, buttons etc. inside the target environ-
ment.

Table 1. Comparison of DreamTeam implementations

 Stationary Proxy Re-used Mobile
Core platform binary 2.3 MB 2.0 MB - 72 KB
Core platform source 125000 lines 110000 lines 98 % 9500 lines

Diagram source 6900 lines 5200 lines 92 % 600 lines
Draw source 930 lines 520 lines 90 % 410 lines

Table 1 summarises our implementation efforts. This table compares the implementa-
tion efforts for stationary DreamTeam and Pocket DreamTeam (proxy and mobile
portions). The column Re-used indicates how much source code of the stationary
version could be re-used in the proxy. We can see a high degree of re-usable source
code for the proxy implementation. In addition, the required source codes for mobile
portions are considerable small. Especially the platform core binary of 72 KB
demonstrates that Pocket DreamTeam is suitable for devices with small memories.

4 Conclusion and Future Work

Pocket DreamTeam demonstrates how we could effectively extend a distributed
application platform for mobile usage. We used the remote proxy pattern as a guide-
line for our architecture. Mobile users can access high-demanding applications
through devices with low computational power. The software architecture based on
resources dramatically simplifies the implementation, since the runtime system is able
to carry out most of the required communication and replication services automati-
cally. Drawbacks related to the remote proxy pattern (e.g., problems with disabled
proxies) are addressed by higher-level mechanisms. For replication and consistency,
the system offers generic mechanisms, which a developer can adapt. Especially the
combination of pessimistic concurrency control for the stationary segment and opti-
mistic concurrency control on the mobile segment is unique and combines the advan-
tages of two concurrency control concepts.

In the future, we want to reduce the implementation efforts for mobile applications
even more. For this, we plan to develop a program, which generates source code for
proxy resources and mobile cached resources automatically from stationary resources.
This however requires some syntax extensions, e.g. new keywords, but would signifi-
cantly reduce development costs.

Jörg Roth

192

References

1 Bey C., Freeman E., Hillerson G., Ostrem J., Rodriguez R., Wilson G., Dugger M.: Palm
OS Programmer's Companion, Volume I, Palm Inc, July 2001

2. Cormack G. V.: A Calculus for Concurrent Update, Department of Computer Science,
University of Waterloo, Waterloo, Canada, 1995

3. Joseph A. D., Tauber J. A., Kaashoek M. F.: Mobile Computing with the Rover Toolkit,
IEEE Transactions on Computers, Vol. 46, No. 3, March 1997, 337-352

4. Kistler J. J., Satyanarayana M.: Disconnected Operation in the Coda File System, ACM
Transaction on Computer Systems, Vol. 10, No. 1, Feb. 1992, 3-25

5. Lotus Development Corporation: Lotus Notes, http://www.lotus.com/home.nsf/welcome/
developernetwork

6. Lukosch S., Roth J.: Reusing Single-user Applications to Create Multi-user Internet
Applications, Innovative Internet Computing Systems (I2CS), Ilmenau, June 21-22, 2001,
LNCS 2060, Springer, 79-90

7. Munson J. P., Dewan P.: Sync: A Java Framework for Mobile Collaborative Applications,
special issue on Executable Content in Java, IEEE Computer, 1997, 59-66

8. Myers B. A., Stiel H., Gargiulo R.: Collaboration Using Multiple PDAs Connected to a PC,
Proceedings of the ACM 1998 conference on Computer supported cooperative work, 1998,
285-294

9. Noble B., Satyanarayanan M., Narayanan D., Tilton J. E., Flinn J., Walker K.: Agile
Application-Aware Adaptation for Mobility, Proceedings of the 16th ACM Symposium on
Operating System Principles, Oct. 1997, St. Malo, France

10. Roth J.: DreamTeam - A Platform for Synchronous Collaborative Applications, AI &
Society (2000), Vol. 14, No. 1, Special Issue on Computer-Supported Cooperative Work,
Springer London, March 2000, 98-119

11. Roth J.: Information sharing with handheld appliances, 8th IFIP Working Conference on
Engineering for Human-Computer Interaction (EHCI'01), Toronto, Canada, May 11-13,
2001, LNCS 2254, Springer, 263-279

12. Roth J.: Patterns of mobile interaction, Proceedings of Mobile HCI 2001: Third
International Workshop on Human Computer Interaction with Mobile Devices, M. D.
Dunlop and S. A. Brewster (eds), IHM-HCI 2001 Lille, France, Sept. 10, 2001, 53-58

13. Roth J., Unger C. : Group Rendezvous in a Synchronous, Collaborative Environment, in R.
Steinmetz (ed): Kommunikation in Verteilten Systemen (KiVS'99), 11. ITG/VDE
Fachtagung, 2.-5. March 1999, Springer, 114-127

14. Roth J., Unger, C.: Using handheld devices in synchronous collaborative scenarios,
Personal and Ubiquitous Computing, Vol. 5, Issue 4, Springer London, Dec. 2001, 243-252

15. Shapriro M.: Structure and Encapsulation in Distributed Systems: the Proxy Principle, Proc.
of the 6th Internal. Conference on Distributed Computing Systems, Mai 1986, 198-204

16. Silva A. R., Rosa F. A., Gonçalves T., Antunes M.: Distributed Proxy: A Design Pattern for
the Incremental Development of Distributed Applications, Proceedings of the 2nd
International Workshop on Engineering Distributed Objects (EDO 2000), Davis, November
2000, California, USA, LNCS 1999, Springer, 165-181

18. Suzuki I., Kasami T.: A distributed mutal exclusion algorithm, ACM Transactions on
Computer Systems, Vol. 3, No. 4, Nov. 1985, 344-349

19. Terry D. B., Theimer M. M., Petersen K., Demers A. J.: Managing Update Conflict in
Bayou, a Weakly Connected Replicated Storage System, Proceedings of the fifteenth ACM
symposium on Operating systems principles, Copper Mountain, CO USA, Dec. 3-6, 1995,
172-182

